Concepts and Formulas Matrix and Determinant

Symmetric and Skew Symmetric matrices

- Symmetric Matrix If $A^T = A$
- Skew symmetric Matrix If A^T = A
 Note: In a skew matrix, diagonal elements are always 0.
- For any square matrix A,
 (A + A^T) is a symmetric matrix
 (A A^T) is a skew-symmetric matrix

Inverse of a matrix

For a square matrix A, if

AB = BA = I

Then, B is the inverse of A

i.e. **B** = A ⁻¹

We will find inverse of a matrix by

- Elementary transformation
- Using adjoint

Properties of Inverse

1. For a matrix A, A $^{-1}$ is unique, i.e., there is only one inverse of a matrix

3. $(kA)^{-1} = 1/kA^{-1}$ **Note:** This is different from $(kA)^{T} = kA^{T}$

4.
$$(A^{-1})^{T} = (A^{T})^{-1}$$

5.
$$(A + B)^{-1} = A^{-1} + B^{-1}$$

6.
$$(AB)^{-1} = B^{-1}A^{-1}$$

Important things to note in Determinants

- 1. Determinant of Identity matrix = 1 det (I) = 1
- 2. $|A^{T}| = |A|$
- 3. |AB| = |A| |B|
- 4. $|A^{-1}| = 1/|A|$
- 5. $|kA| = k^{n} |A|$ where n is order of matrix
- 6. Similarly, $\begin{aligned} |-A| &= |-1 \times A| \\ &= (-1)^n \times |A| \end{aligned}$
- 7. (adj A) A = A (adj) = |A|I
- 8. Deteminant of adj A |adj A| = $|A|^{n-1}$ where n is the order of determinant